|
| Dirac_Wilson_evenodd (Dirac_Wilson_evenodd &d) |
| Constructor: initialize mass and gauge.
|
|
| Dirac_Wilson_evenodd (double k, Field< matrix >(&U)[4]) |
| Constructor: initialize mass and gauge.
|
|
| Dirac_Wilson_evenodd (double k, gauge_field_base< matrix > &g) |
| Constructor: initialize mass and gauge.
|
|
template<typename M > |
| Dirac_Wilson_evenodd (Dirac_Wilson_evenodd< M > &d, gauge_field_base< matrix > &g) |
| Construct from another Dirac_Wilson operator of a different type.
|
|
void | apply (const Field< vector_type > &in, Field< vector_type > &out) |
| Applies the operator to in.
|
|
void | dagger (const Field< vector_type > &in, Field< vector_type > &out) |
| Applies the conjugate of the operator.
|
|
template<typename momtype > |
void | force (const Field< vector_type > &chi, const Field< vector_type > &psi, Field< momtype >(&force)[4], int sign) |
|
template<typename matrix>
class Dirac_Wilson_evenodd< matrix >
An even-odd decomposed Wilson Dirac operator. Applies D_{even to odd} D_{diag}^{-1} D_{odd to even} on the even sites of the vector.
The fermion partition function is det(D) = det(D_eveneodd) + det(D_{diag odd}). Dirac_Wilson_evenodd can be used to replace D_Wilson in the HMC action, as long as the diagonal odd to odd part is accounted for.
This is useful for defining inverters as composite operators. For example the conjugate gradient inverter is CG<Dirac_Wilson_evenodd>.
Definition at line 234 of file wilson.h.